login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238007
Number of strict partitions of n such that (greatest part) - (least part) >= (number of parts).
5
0, 0, 0, 1, 1, 2, 3, 5, 5, 8, 10, 13, 16, 20, 23, 31, 36, 43, 52, 62, 72, 87, 102, 120, 139, 163, 188, 220, 254, 292, 338, 389, 444, 510, 581, 665, 758, 862, 978, 1111, 1258, 1422, 1608, 1814, 2042, 2302, 2588, 2908, 3261, 3655, 4093, 4580, 5118, 5714, 6374
OFFSET
1,6
COMMENTS
From Omar E. Pol, Mar 04 2017: (Start)
Partitions into distinct parts are sometimes called "strict partitions".
a(n) is also the number of partitions of n into distinct parts, which are not the partitions into (one or more) consecutive parts. (End)
LINKS
FORMULA
a(n) = A000009(n) - A001227(n). - Omar E. Pol, Mar 04 2017
a(n) = A238005(n)+A238006(n). - R. J. Mathar, Sep 08 2021
EXAMPLE
a(9) = 5 counts these partitions: 81, 72, 63, 621, 531.
MAPLE
spart:= proc(n, a, b, k) option remember;
# count strict partitions of n in exactly k parts with parts in [a, b]
if min(k, n) = 0 then if n=k then return 1 else return 0 fi fi;
if n < k*(2*a+k-1)/2 or n > k*(2*b-k+1)/2 then return 0 fi;
add (procname(n-x, a, x-1, k-1), x=a..min(n, b));
end proc:
f:= n -> add(add(add(spart(n-a-b, a+1, b-1, k-2), k=2..b-a), b=a+2..n), a=1..n-2):
map(f, [$1..100]); # Robert Israel, Mar 06 2017
MATHEMATICA
z = 70; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]];
Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A001227 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A003056 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A238005 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A238006 *)
Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A238007 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 17 2014
STATUS
approved