OFFSET
1,6
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} x^(4*k)/Product_{j=k..3*k} (1-x^j). - Seiichi Manyama, May 14 2023
EXAMPLE
a(7) = 3 counts these partitions: 331, 3211, 31111.
MATHEMATICA
z = 64; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}] (* A237825*)
Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}] (* A237826 *)
Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}] (* A237827 *)
Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
Table[Count[IntegerPartitions[n], _?(3#[[-1]]==#[[1]]&)], {n, 60}] (* Harvey P. Dale, May 14 2023 *)
kmax = 57;
Sum[x^(4 k)/Product[1 - x^j, {j, k, 3 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
PROG
(PARI) my(N=60, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, 3*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 16 2014
STATUS
approved