OFFSET
1,2
COMMENTS
Also number of partitions of n such that the number of parts is a multiple of the multiplicity of the largest part. Example: a(7)=12 because from the 15 (=A000041(7)) partitions of 7 only [3,3,1], [2,2,2,1] and [2,2,1,1,1] do not qualify (3,4,5 are not multiples of 2,3,2, respectively). - Emeric Deutsch, Apr 21 2006
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
G.f.: Sum_{L>=0} Sum_{k>=1} (x^((L+1)*k) / Product_{i=k..L*k} (1 - x^i)).
EXAMPLE
a(7)=12 because from the 15 (=A000041(7)) partitions of 7 only [5,2],[4,3] and [3,2,2] do not qualify.
MAPLE
f:=add(add(x^((l+1)*k)/mul(1-x^i, i=k..l*k), k=1..51), l=0..51): s:=series(f, x, 51):for m from 1 to 50 do c:=coeff(s, x, m): printf(`%d, `, c); od: # (Jovovic) - Emeric Deutsch, Apr 21 2006
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(Divisible[First[#], Last[#]]&)], {n, 50}] (* Harvey P. Dale, Mar 04 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 17 2006
EXTENSIONS
More terms from Emeric Deutsch, Apr 21 2006
STATUS
approved