login
A117086
Number of partitions of n such that the largest part is a multiple of the smallest part.
7
1, 2, 3, 5, 6, 11, 12, 20, 26, 37, 45, 71, 84, 117, 152, 203, 253, 342, 421, 556, 694, 884, 1096, 1409, 1729, 2168, 2672, 3327, 4061, 5039, 6114, 7514, 9110, 11098, 13400, 16275, 19537, 23575, 28245, 33929, 40465, 48424, 57552, 68569, 81296, 96449
OFFSET
1,2
COMMENTS
Also number of partitions of n such that the number of parts is a multiple of the multiplicity of the largest part. Example: a(7)=12 because from the 15 (=A000041(7)) partitions of 7 only [3,3,1], [2,2,2,1] and [2,2,1,1,1] do not qualify (3,4,5 are not multiples of 2,3,2, respectively). - Emeric Deutsch, Apr 21 2006
LINKS
FORMULA
G.f.: Sum_{L>=0} Sum_{k>=1} (x^((L+1)*k) / Product_{i=k..L*k} (1 - x^i)).
EXAMPLE
a(7)=12 because from the 15 (=A000041(7)) partitions of 7 only [5,2],[4,3] and [3,2,2] do not qualify.
MAPLE
f:=add(add(x^((l+1)*k)/mul(1-x^i, i=k..l*k), k=1..51), l=0..51): s:=series(f, x, 51):for m from 1 to 50 do c:=coeff(s, x, m): printf(`%d, `, c); od: # (Jovovic) - Emeric Deutsch, Apr 21 2006
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(Divisible[First[#], Last[#]]&)], {n, 50}] (* Harvey P. Dale, Mar 04 2012 *)
CROSSREFS
Cf. A118096.
Cf. A000041.
Sequence in context: A365311 A083710 A127524 * A344551 A081026 A137808
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 17 2006
EXTENSIONS
More terms from Emeric Deutsch, Apr 21 2006
STATUS
approved