login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n such that 3*(least part) = greatest part.
10

%I #21 May 30 2024 06:55:31

%S 0,0,0,1,1,2,3,5,5,8,9,13,14,18,20,27,28,35,38,49,51,61,66,81,86,102,

%T 109,130,136,161,172,202,214,245,264,305,323,369,395,452,480,544,580,

%U 657,703,786,842,947,1008,1124,1205,1340,1432,1589,1702,1886,2014

%N Number of partitions of n such that 3*(least part) = greatest part.

%H David A. Corneth, <a href="/A237825/b237825.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=1} x^(4*k)/Product_{j=k..3*k} (1-x^j). - _Seiichi Manyama_, May 14 2023

%e a(7) = 3 counts these partitions: 331, 3211, 31111.

%t z = 64; q[n_] := q[n] = IntegerPartitions[n];

%t Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}] (* A237825*)

%t Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}] (* A237826 *)

%t Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}] (* A237827 *)

%t Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)

%t Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)

%t Table[Count[IntegerPartitions[n],_?(3#[[-1]]==#[[1]]&)],{n,60}] (* _Harvey P. Dale_, May 14 2023 *)

%t kmax = 57;

%t Sum[x^(4 k)/Product[1 - x^j, {j, k, 3 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* _Jean-François Alcover_, May 30 2024, after _Seiichi Manyama_ *)

%o (PARI) my(N=60, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, 3*k, 1-x^j)))) \\ _Seiichi Manyama_, May 14 2023

%Y Cf. A000041, A117086, A237757, A237828, A237829.

%Y Cf. A118096, A237826, A237827.

%K nonn,easy

%O 1,6

%A _Clark Kimberling_, Feb 16 2014