login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237829
Number of partitions of n such that 2*(least part) - 1 = greatest part.
5
1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 3, 4, 5, 5, 6, 8, 6, 8, 10, 10, 10, 15, 12, 14, 17, 18, 20, 23, 21, 26, 29, 30, 31, 39, 38, 42, 46, 49, 52, 61, 60, 68, 74, 77, 83, 94, 95, 104, 112, 122, 128, 143, 144, 159, 172, 181, 192, 212, 219, 237, 253, 271, 285
OFFSET
1,5
FORMULA
G.f.: x + Sum_{k>=1} x^(3*k-1)/Product_{j=k..2*k-1} (1-x^j). - Seiichi Manyama, May 17 2023
EXAMPLE
a(8) = 3 counts these partitions: 53, 332, 11111111.
MATHEMATICA
z = 64; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}] (* A237825*)
Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}] (* A237826 *)
Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}] (* A237827 *)
Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
(* Second program: *)
kmax = 64;
Sum[x^(3k-1)/Product[1-x^j, {j, k, 2k-1}], {k, 1, kmax}]/x+1+O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
PROG
(PARI) my(N=70, x='x+O('x^N)); Vec(x+sum(k=1, N, x^(3*k-1)/prod(j=k, 2*k-1, 1-x^j))) \\ Seiichi Manyama, May 17 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 16 2014
STATUS
approved