login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237822
Number of partitions of n such that (greatest part) + (least part) < number of parts.
5
0, 0, 1, 1, 2, 3, 5, 6, 10, 14, 19, 26, 36, 47, 64, 84, 110, 142, 185, 236, 304, 384, 486, 612, 769, 957, 1193, 1477, 1826, 2247, 2761, 3373, 4122, 5014, 6089, 7372, 8909, 10731, 12913, 15493, 18559, 22178, 26464, 31504, 37458, 44440, 52648, 62260, 73526
OFFSET
1,5
EXAMPLE
a(6) = 3 counts these partitions: 2211, 2111, 111111.
MATHEMATICA
z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p];
Table[Count[q[n], p_ /; Max[p] + Min[p] < t[p]], {n, z}] (* A237822 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] <= t[p]], {n, z}] (* A237823 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] == t[p]], {n, z}] (* A237869 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] > t[p]], {n, z}] (* A237870 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] >= t[p]], {n, z}] (* A237871 *)
Table[Count[IntegerPartitions[n], _?(#[[1]]+#[[-1]]<Length[#]&)], {n, 50}] (* Harvey P. Dale, Jul 26 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 18 2014
STATUS
approved