OFFSET
0,1
COMMENTS
For fixed m >= 2 and sufficiently large k, the first m+1 antidiagonal partitions of k, listed in reverse Mathematica order, are as follows: p(0) = [1,1,...,1] (k 1's), p(1) = [2,1,...,1] (k-2 1's), p(2) = [2,2,1,...,1] (k-4 1's), ..., p[m] = [2,...,2,1,...,1] (m 2's and k-2m 1's). The number of occurrences of p(n) among all the partitions of k (for sufficiently large k), is a(n); see Example.
LINKS
Clark Kimberling and Peter J. C. Moses, Ferrers Matrices and Related Partitions of Integers
EXAMPLE
Referring to the antidiagonal partitions p(i) in Comments, p(0) occurs 2 times for all k >=2; p(1) occurs 2 times for all k >=5; p(2) occurs 4 times for all k >= 7; p(3) occurs 4 times for all k >= 9; etc., so that A238004 begins with 2, 2, 4, 4.
MATHEMATICA
ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; antiDiagPartNE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[Reverse[m], #] &, Range[-#, #] &[Length[m] - 1]]]; a[n_] := Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, antiDiagPartNE[#]]]], 0] &, IntegerPartitions[n]]]]]
Take[a[40], 100] (* Peter J. C. Moses, Feb 18 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling and Peter J. C. Moses, Feb 25 2014
STATUS
approved