login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344326
Dirichlet g.f.: zeta(s)^2/zeta(2*s-1).
3
1, 2, 2, 1, 2, 4, 2, 0, 0, 4, 2, 2, 2, 4, 4, -1, 2, 0, 2, 2, 4, 4, 2, 0, -2, 4, -2, 2, 2, 8, 2, -2, 4, 4, 4, 0, 2, 4, 4, 0, 2, 8, 2, 2, 0, 4, 2, -2, -4, -4, 4, 2, 2, -4, 4, 0, 4, 4, 2, 4, 2, 4, 0, -3, 4, 8, 2, 2, 4, 8, 2, 0, 2, 4, -4, 2, 4, 8, 2, -2, -4, 4, 2
OFFSET
1,2
COMMENTS
Compare with the Dirichlet generating function for the matrix in A191898.
LINKS
FORMULA
Dirichlet g.f.: zeta(s)^2/zeta(2*s-1). After Franklin T. Adams-Watters in A034448.
Multiplicative with a(p^e) = 2 - (e-1)*(p-1). - Amiram Eldar, May 18 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Nov 18 2022
MATHEMATICA
nn = 83; usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; U=Table[Table[If[Mod[n, k] == 0, usigma[n/k], 0], {k, 1, nn}], {n, 1, nn}]; M=Table[Table[If[Mod[n, k] == 0, MoebiusMu[n/k]*n/k, 0], {k, 1, nn}], {n, 1, nn}]; Z=Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; (U.M.Z)[[Range[nn], 1]] (* After Giovanni Resta A034448 *)
f[p_, e_] := 2 - (e-1)*(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 18 2021 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - p*X^2)/(1-X)^2)[n], ", ")) \\ Vaclav Kotesovec, May 18 2021
(PARI) A344326(n) = if(1==n, 1, my(f=factor(n)); prod(k=1, #f~, (2-((f[k, 1]-1)*(f[k, 2]-1))))); \\ (After the multiplicative formula given by Amiram Eldar) - Antti Karttunen, May 19 2021
CROSSREFS
KEYWORD
sign,mult,easy
AUTHOR
Mats Granvik, May 18 2021
STATUS
approved