The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344328 Number of divisors of n^5. 2
 1, 6, 6, 11, 6, 36, 6, 16, 11, 36, 6, 66, 6, 36, 36, 21, 6, 66, 6, 66, 36, 36, 6, 96, 11, 36, 16, 66, 6, 216, 6, 26, 36, 36, 36, 121, 6, 36, 36, 96, 6, 216, 6, 66, 66, 36, 6, 126, 11, 66, 36, 66, 6, 96, 36, 96, 36, 36, 6, 396, 6, 36, 66, 31, 36, 216, 6, 66, 36, 216, 6, 176, 6, 36, 66, 66, 36 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A000005(A000584(n)). Multiplicative with a(p^e) = 5*e+1. a(n) = Sum_{d|n} 5^omega(d). G.f.: Sum_{k>=1} 5^omega(k) * x^k/(1 - x^k). Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 4/p^s). - Vaclav Kotesovec, Aug 19 2021 MATHEMATICA Table[DivisorSigma[0, n^5], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *) PROG (PARI) a(n) = numdiv(n^5); (PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 5*f[k]+1); (PARI) a(n) = sumdiv(n, d, 5^omega(d)); (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 5^omega(k)*x^k/(1-x^k))) (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021 CROSSREFS Column k=5 of A343656. Cf. A000005, A000584, A082476 (5^omega(n)), A203556. Sequence in context: A096474 A220439 A240620 * A168282 A122762 A046605 Adjacent sequences:  A344325 A344326 A344327 * A344329 A344330 A344331 KEYWORD nonn,mult AUTHOR Seiichi Manyama, May 15 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 07:06 EDT 2021. Contains 347510 sequences. (Running on oeis4.)