login
A344328
Number of divisors of n^5.
2
1, 6, 6, 11, 6, 36, 6, 16, 11, 36, 6, 66, 6, 36, 36, 21, 6, 66, 6, 66, 36, 36, 6, 96, 11, 36, 16, 66, 6, 216, 6, 26, 36, 36, 36, 121, 6, 36, 36, 96, 6, 216, 6, 66, 66, 36, 6, 126, 11, 66, 36, 66, 6, 96, 36, 96, 36, 36, 6, 396, 6, 36, 66, 31, 36, 216, 6, 66, 36, 216, 6, 176, 6, 36, 66, 66, 36
OFFSET
1,2
LINKS
FORMULA
a(n) = A000005(A000584(n)).
Multiplicative with a(p^e) = 5*e+1.
a(n) = Sum_{d|n} 5^omega(d).
G.f.: Sum_{k>=1} 5^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 4/p^s). - Vaclav Kotesovec, Aug 19 2021
MATHEMATICA
Table[DivisorSigma[0, n^5], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
PROG
(PARI) a(n) = numdiv(n^5);
(PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 5*f[k]+1);
(PARI) a(n) = sumdiv(n, d, 5^omega(d));
(PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 5^omega(k)*x^k/(1-x^k)))
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021
CROSSREFS
Column k=5 of A343656.
Cf. A000005, A000584, A082476 (5^omega(n)), A203556.
Sequence in context: A220439 A363324 A240620 * A168282 A122762 A046605
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 15 2021
STATUS
approved