login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344331 Side s of squares of type 1 that can be tiled with squares of two different sizes so that the number of large or small squares is the same. 8
10, 20, 30, 40, 50, 60, 68, 70, 78, 80, 90, 100, 110, 120, 130, 136, 140, 150, 156, 160, 170, 180, 190, 200, 204, 210, 220, 222, 230, 234, 240, 250, 260, 270, 272, 280, 290, 300, 310, 312, 320, 330, 340, 350, 360, 370, 380, 390, 400, 408, 410, 420, 430, 440, 444, 450, 460, 468, 470 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This sequence is relative to the generalization of the 4th problem proposed for the pupils in grade 6 during the 19th Mathematical Festival at Moscow in 2008 (see A344330).
There are two types of solutions, the first one is proposed here, while type 2 is described in A344332.
Some notations: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
-> Primitive squares
Side s of primitive squares of type 1 must satisfy the Diophantine equation s^2 = z * (a^2+b^2), with gcd(a, b) = 1, and without using the conditions a^2+b^2 = c^2, when a and b belong to a Pythagorean triple (a, b, c).
In this case, the sides of the primitive squares of type 1 are s = a*b * (a^2+b^2) with 1 <= a < b and gcd(a, b) = 1 (A344333), then corresponding z = (a*b)^2 * (a^2+b^2) (A344334).
Every primitive square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
In particular: for a = 1, b = n, s = n*(n^2+1) form the subsequence A034262 \ {0, 1} and z = n^2*(n^2+1) form the subsequence A071253 \ {0, 2}).
See example with design for a square of side s = 10 with a = 1, b = 2, m = 10, z = 20.
-> Non-primitive squares
If s is the side of a primitive square of type 1 with z squares of side a and z squares of side b, then every k * s is a non-primitive term that gives one or two distinct tilings of type 1, depending of value of k:
- For every k > 1, the square ks X ks can be tiled with k^2*z squares of side a and k^2*z squares of side b (see example).
- For every k = r^4, r>1, the square ks X ks also can be tiled with z squares of side ka and z squares of side kb.
---> Consequences:
1) For every pair (a, b), 1 <= a < b, there is a square of side s = a*b * (a^2+b^2) that can be tiled with squares of side a and side b so that the number z of squares of side a and side b is the same, this number z = (a*b)^2 * (a^2+b^2).
2) If q is a term and K > 1, K * q is another term.
3) Every term is even.
REFERENCES
Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.
LINKS
EXAMPLE
Primitive square with s = 10:
a = 1, b = 2, s = 10, m = 10, z = 20, and
Non-primitive square with s = 20:
a = 1, b = 2, s = 20, m = 40, z = 80.
___ ___ _ ___ ___ _ ___________________
| | |_| | |_| |
|___|___|_|___|___|_| |
| | |_| | |_| |
|___|___|_|___|___|_| |
| | |_| | |_| |
|___|___|_|___|___|_| |
| | |_| | |_| |
|___|___|_|___|___|_| |
| | |_| | |_| |
|___|___|_|___|___|_|___________________|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
|___________________|___________________|
with respectively m = 10 (and m = 40) elementary 2 X 5 rectangles as below:
___ ___ _
| | |_|
|___|___|_|
There are these three possibilities:
- 10 is a primitive term because the square 10 X 10 can be tiled with 20 squares of size 1 X 1 and 20 squares of size 2 X 2, and no smaller square can be tiled with a same number of squares of size 1 X 1 and of squares of size 2 X 2.
- 20 is a non-primitive term because the square 20 X 20 can be tiled with 80 squares of size 1 X 1 and 80 squares of size 2 X 2.
- 30 is a primitive term because the square 30 X 30 can be tiled with 90 squares of size 1 X 1 and 90 squares of size 3 X 3, and no smaller square can be tiled with a same number of squares of size 1 X 1 and of squares of size 3 X 3,
but also, 30 is a non-primitive term because the square 30 X 30 can be tiled with 180 squares of size 1 X 1 and 180 squares of size 2 X 2.
PROG
(PARI) isokp1(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->x*y*(x^2+y^2), [1..m]), s); }
isok(s) = {if (isokp1(s), return (1)); fordiv(s, d, if ((d>1) || (d<s), if (isokp1(s/d), return (1)))); } \\ Michel Marcus, Dec 22 2021
CROSSREFS
Sequence in context: A095973 A299970 A342143 * A358048 A037997 A044850
KEYWORD
nonn
AUTHOR
Bernard Schott, May 20 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 10:09 EDT 2024. Contains 375040 sequences. (Running on oeis4.)