OFFSET
1,1
COMMENTS
Some notations: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form s = a*b * (a^2+b^2) with gcd(a, b) = 1, then corresponding z = (a*b)^2 * (a^2+b^2) (see A344334).
Every primitive square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
If a = 1 and b = n > 1, then sides of squares s = n * (n^2+1) form the subsequence A034262 \ {0, 1}.
Every term is even.
REFERENCES
Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.
EXAMPLE
Square 10 x 10 with a = 1, b = 2, s = 10, z = 20.
___ ___ _ ___ ___ _
| | |_| | |_|
|___|___|_|___|___|_|
| | |_| | |_| with 10 elementary 2 x 5 rectangles
|___|___|_|___|___|_|
| | |_| | |_| ___ ___ _
|___|___|_|___|___|_| | | |_|
| | |_| | |_| |___|___|_|
|___|___|_|___|___|_|
| | |_| | |_|
|___|___|_|___|___|_|
PROG
(PARI) isok(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->if (gcd(x, y)==1, x*y*(x^2+y^2), 0), [1..m]), s); } \\ Michel Marcus, Dec 22 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Jun 01 2021
STATUS
approved