login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344335
Number of divisors of n^8.
2
1, 9, 9, 17, 9, 81, 9, 25, 17, 81, 9, 153, 9, 81, 81, 33, 9, 153, 9, 153, 81, 81, 9, 225, 17, 81, 25, 153, 9, 729, 9, 41, 81, 81, 81, 289, 9, 81, 81, 225, 9, 729, 9, 153, 153, 81, 9, 297, 17, 153, 81, 153, 9, 225, 81, 225, 81, 81, 9, 1377, 9, 81, 153, 49, 81, 729, 9, 153, 81, 729, 9
OFFSET
1,2
LINKS
FORMULA
a(n) = A000005(A001016(n)).
Multiplicative with a(p^e) = 8*e+1.
a(n) = Sum_{d|n} 8^omega(d).
G.f.: Sum_{k>=1} 8^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 7/p^s). - Vaclav Kotesovec, Aug 19 2021
MATHEMATICA
Table[DivisorSigma[0, n^8], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
PROG
(PARI) a(n) = numdiv(n^8);
(PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 8*f[k]+1);
(PARI) a(n) = sumdiv(n, d, 8^omega(d));
(PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 8^omega(k)*x^k/(1-x^k)))
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 7*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021
CROSSREFS
Column k=8 of A343656.
Sequence in context: A350919 A144418 A003885 * A168390 A333151 A321659
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 15 2021
STATUS
approved