|
|
A344337
|
|
a(n) = 9^omega(n), where omega(n) is the number of distinct primes dividing n.
|
|
1
|
|
|
1, 9, 9, 9, 9, 81, 9, 9, 9, 81, 9, 81, 9, 81, 81, 9, 9, 81, 9, 81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 729, 9, 9, 81, 81, 81, 81, 9, 81, 81, 81, 9, 729, 9, 81, 81, 81, 9, 81, 9, 81, 81, 81, 9, 81, 81, 81, 81, 81, 9, 729, 9, 81, 81, 9, 81, 729, 9, 81, 81, 729, 9, 81, 9, 81, 81, 81
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(p^e) = 9.
a(n) = Sum_{d|n} mu(d)^2 * tau(d)^3.
Dirichlet g.f.: Product_{p prime} (1 + 9/(p^s-1)). - Amiram Eldar, Sep 19 2023
|
|
MATHEMATICA
|
Table[9^PrimeNu[n], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
|
|
PROG
|
(PARI) a(n) = 9^omega(n);
(PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 9);
(PARI) a(n) = sumdiv(n, d, moebius(d)^2*numdiv(d)^3);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|