login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344337
a(n) = 9^omega(n), where omega(n) is the number of distinct primes dividing n.
1
1, 9, 9, 9, 9, 81, 9, 9, 9, 81, 9, 81, 9, 81, 81, 9, 9, 81, 9, 81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 729, 9, 9, 81, 81, 81, 81, 9, 81, 81, 81, 9, 729, 9, 81, 81, 81, 9, 81, 9, 81, 81, 81, 9, 81, 81, 81, 81, 81, 9, 729, 9, 81, 81, 9, 81, 729, 9, 81, 81, 729, 9, 81, 9, 81, 81, 81
OFFSET
1,2
FORMULA
a(n) = A001019(A001221(n)).
Multiplicative with a(p^e) = 9.
a(n) = Sum_{d|n} mu(d)^2 * tau(d)^3.
Dirichlet g.f.: Product_{p prime} (1 + 9/(p^s-1)). - Amiram Eldar, Sep 19 2023
MATHEMATICA
Table[9^PrimeNu[n], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
PROG
(PARI) a(n) = 9^omega(n);
(PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 9);
(PARI) a(n) = sumdiv(n, d, moebius(d)^2*numdiv(d)^3);
CROSSREFS
k^omega(n): A034444 (k=2), A074816 (k=3), A082476 (k=5), this sequence (k=9).
Sequence in context: A242893 A275485 A346263 * A293832 A277223 A144586
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 15 2021
STATUS
approved