login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122762 a(0) = ... = a(9) = 1; for n >= 10, a(n) = a(n - 2) + a(n - 4) + a(n - 5) + a(n - 7) + a(n - 8) + a(n - 10). 4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 11, 11, 21, 26, 41, 56, 86, 121, 181, 256, 381, 541, 801, 1146, 1686, 2426, 3551, 5131, 7486, 10841, 15791, 22896, 33321, 48346, 70321, 102076, 148416, 215506, 313256, 454961, 661206, 960446, 1395686, 2027501 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Shannon mentions this recurrence with characteristic polynomial x^10+x^8+x^7+x^5+x^4+x^2-1==0 in connection with the channel capacity Cp=Log[W]=Log[xroot_max]=0.539...

REFERENCES

Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, p37-38

LINKS

Table of n, a(n) for n=0..45.

Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 1, 1, 0, 1, 1, 0, 1).

FORMULA

O.g.f.: (-1-x+x^4+2*x^5+2*x^6+3*x^7+4*x^8+4*x^9)/(-1+x^2+x^4+x^5+x^7+x^8+x^10). - R. J. Mathar, Dec 05 2007

MATHEMATICA

a[0] = 1; a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 1; a[5] = 1; a[6] = 1; a[7] = 1; a[8] = 1; a[9] = 1; a[n_] := a[n] = a[n - 2] + a[n - 4] + a[n - 5] + a[n - 7] + a[n - 8] + a[n - 10] Table[a[n], {n, 0, 100}]

CROSSREFS

Sequence in context: A220439 A240620 A168282 * A046605 A095899 A163757

Adjacent sequences:  A122759 A122760 A122761 * A122763 A122764 A122765

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Sep 21 2006

EXTENSIONS

Edited by N. J. A. Sloane, May 09 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 12:10 EDT 2020. Contains 333125 sequences. (Running on oeis4.)