login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353421
Dirichlet convolution of A353269 with A353348 (the Dirichlet inverse of A353350).
3
1, 0, 0, 1, 0, -1, 0, -1, 1, 1, 0, 0, 0, -1, -1, 1, 0, 0, 0, -1, 1, 1, 0, -1, 1, -1, -1, 0, 0, 1, 0, -1, -1, 1, -1, 1, 0, -1, 1, 1, 0, 0, 0, -1, 0, 1, 0, 1, 1, -1, -1, 0, 0, -1, 1, -1, 1, -1, 0, -2, 0, 1, -1, 1, -1, 1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -2, 1, 1, 0, 2, 1, -1, 1, 1, 0, 2, 1, -1, -1, 1, -1
OFFSET
1,60
COMMENTS
Dirichlet convolution between this sequence and A353352 is A353362.
FORMULA
a(n) = Sum_{d|n} A353269(n/d) * A353348(d).
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
A353350(n) = (0==(A048675(n)%3));
v353348 = DirInverseCorrect(vector(up_to, n, A353350(n)));
A353348(n) = v353348[n];
A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A353269(n) = (!(A156552(n)%3));
A353421(n) = sumdiv(n, d, A353269(n/d)*A353348(d));
CROSSREFS
Cf. A353422 (Dirichlet inverse).
Sequence in context: A056175 A325987 A359324 * A105241 A134541 A286627
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 19 2022
STATUS
approved