login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353423
For even n, a(n) = -Sum_{d|n, d<n} a(n/2) * a(d), and for odd n, a(n) = a(A064989(n)), with a(1) = 1.
2
1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -2, -1, -1, -1, 0, -1, 0, -1, -2, -1, -1, -1, -8, 0, -1, 0, -2, -1, -5, -1, 0, -1, -1, -1, 0, -1, -1, -1, -8, -1, -5, -1, -2, -2, -1, -1, -96, 0, 0, -1, -2, -1, 0, -1, -8, -1, -1, -1, -70, -1, -1, -2, 0, -1, -5, -1, -2, -1, -5, -1, 0, -1, -1, 0, -2, -1, -5, -1, -96, 0, -1, -1, -70
OFFSET
1,12
COMMENTS
Apparently, for all i, j >= 1, A077462(i) = A077462(j) => a(i) = a(j).
FORMULA
a(p) = -1 for all primes p.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
memoA353423 = Map();
A353423(n) = if(1==n, 1, my(v); if(mapisdefined(memoA353423, n, &v), v, if(!(n%2), v = -sumdiv(n, d, if(d<n, A353423(n/2)*A353423(d), 0)), v = A353423(A064989(n))); mapput(memoA353423, n, v); (v)));
CROSSREFS
Cf. A070003 (positions of 0's), A167171 (positions of -1's), A096156 (positions of -2's), A007304 (positions of -5's), A086975 (positions of -70's), all these are so far conjectural. Also a subsequence of A178739 seems to give the positions of -96's.
Cf. also A353454, A353457, A353458, A353467 for similar recurrences.
Sequence in context: A374081 A353454 A276799 * A037907 A365167 A037801
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved