login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008835
Largest 4th power dividing n.
21
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 81
OFFSET
1,16
FORMULA
a(n) = A000188(A000188(n))^4.
Multiplicative with a(p^e) = p^(4[e/4]). - Mitch Harris, Apr 19 2005
Dirichlet g.f.: zeta(s) * zeta(4s-4) / zeta(4s). - Álvar Ibeas, Feb 12 2015
Sum_{k=1..n} a(k) ~ zeta(5/4) * n^(5/4) / (5*zeta(5)) - 45*n/Pi^4. - Vaclav Kotesovec, Feb 03 2019
a(n) = n/A053165(n). - Amiram Eldar, Aug 15 2023
a(n) = A053164(n)^4. - Amiram Eldar, Sep 01 2024
MAPLE
with(numtheory): [ seq( expand(nthpow(i, 4)), i=1..200) ];
MATHEMATICA
Max@ Select[Divisors@ #, IntegerQ@ Power[#, 1/4] &] & /@ Range@ 81 (* Michael De Vlieger, Mar 18 2015 *)
f[p_, e_] := p^(e - Mod[e, 4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 15 2023 *)
PROG
(PARI) a(n) = {f = factor(n); for (i=1, #f~, f[i, 2] = 4*(f[i, 2]\4); ); factorback(f); } \\ Michel Marcus, Mar 16 2015
(Python)
from math import prod
from sympy import factorint
def A008835(n): return prod(p**(e&-4) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 08 2024
CROSSREFS
KEYWORD
nonn,easy,mult
EXTENSIONS
Entry improved by comments from Henry Bottomley, Feb 29 2000
STATUS
approved