login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008832
Discrete logarithm of n to the base 2 modulo 19.
0
0, 1, 13, 2, 16, 14, 6, 3, 8, 17, 12, 15, 5, 7, 11, 4, 10, 9
OFFSET
1,3
COMMENTS
Equivalently, a(n) is the multiplicative order of n with respect to base 2 (modulo 19), i.e., a(n) is the base-2 logarithm of the smallest k such that 2^k mod 19 = n. - Jon E. Schoenfield, Aug 13 2021
REFERENCES
Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 37.
I. M. Vinogradov, Elements of Number Theory, p. 221.
LINKS
Eric Weisstein's World of Mathematics, Discrete Logarithm.
FORMULA
2^a(n) == n (mod 19). - Michael S. Branicky, Aug 13 2021
EXAMPLE
From Jon E. Schoenfield, Aug 13 2021: (Start)
Sequence is a permutation of the 18 integers 0..17:
k 2^k 2^k mod 19
-- ------ ----------
0 1 1 so a(1) = 0
1 2 2 so a(2) = 1
2 4 4 so a(4) = 2
3 8 8 so a(8) = 3
4 16 16 so a(16) = 4
5 32 13 so a(13) = 5
6 64 7 so a(7) = 6
7 128 14 so a(14) = 7
8 256 9 so a(9) = 8
9 512 18 so a(18) = 9
10 1024 17 so a(17) = 10
11 2048 15 so a(15) = 11
12 4096 11 so a(11) = 12
13 8192 3 so a(3) = 13
14 16384 6 so a(6) = 14
15 32768 12 so a(12) = 15
16 65536 5 so a(5) = 16
17 131072 10 so a(10) = 17
18 262144 1
but a(1) = 0, so the sequence is finite with 18 terms.
(End)
MAPLE
[ seq(mlog(n, 2, 19), n=1..18) ];
MATHEMATICA
a[1]=0; a[n_]:=MultiplicativeOrder[2, 19, {n}]; Array[a, 18] (* Vincenzo Librandi, Mar 21 2020 *)
PROG
(PARI) a(n) = znlog(n, Mod(2, 19)); \\ Kevin Ryde, Aug 13 2021
(Python)
from sympy.ntheory import discrete_log
def a(n): return discrete_log(19, n, 2)
print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Aug 13 2021
CROSSREFS
Cf. A036120.
Sequence in context: A367936 A124686 A113807 * A180704 A040168 A176593
KEYWORD
nonn,base,fini,full
EXTENSIONS
Offset corrected by Jon E. Schoenfield, Aug 12 2021
STATUS
approved