login
Numbers of the form p * m^2, where p is prime and m > 0: union of A228056 and A000040.
13

%I #34 Jan 30 2025 17:22:07

%S 2,3,5,7,8,11,12,13,17,18,19,20,23,27,28,29,31,32,37,41,43,44,45,47,

%T 48,50,52,53,59,61,63,67,68,71,72,73,75,76,79,80,83,89,92,97,98,99,

%U 101,103,107,108,109,112,113,116,117,124,125,127,128,131,137,139,147,148,149

%N Numbers of the form p * m^2, where p is prime and m > 0: union of A228056 and A000040.

%C No term is the product of two other terms.

%C Squares of terms and pairwise products of distinct terms form a subsequence of A028260.

%C Numbers n such that A162642(n) = 1. - _Jason Kimberley_, Oct 10 2016

%C Numbers k such that A007913(k) is a prime number. - _Amiram Eldar_, Jul 27 2020

%H Chris Boyd, <a href="/A229125/b229125.txt">Table of n, a(n) for n = 1..10000</a>

%H Eckford Cohen, <a href="https://doi.org/10.4064/aa-7-4-417-420">Arithmetical notes, IX. On the set of integers representable as a product of a prime and square</a>, Acta Arithmetica, Vol. 7 (1962), pp. 417-420.

%F The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). - _Amiram Eldar_, Jul 27 2020

%t With[{nn=70},Take[Union[Flatten[Table[p*m^2,{p,Prime[Range[nn]]},{m,nn}]]], nn]] (* _Harvey P. Dale_, Dec 02 2014 *)

%o (PARI) test(n)=isprime(core(n))

%o for(n=1,200,if(test(n), print1(n",")))

%o (Python)

%o from math import isqrt

%o from sympy import primepi

%o def A229125(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o kmin = kmax >> 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def f(x): return n+x-sum(primepi(x//y**2) for y in range(1,isqrt(x)+1))

%o return bisection(f,n,n) # _Chai Wah Wu_, Jan 30 2025

%Y Subsequence of A026424.

%Y Cf. A028260, A162642, A229153.

%Y Cf. A007913, A013661.

%Y Subsequences: A000040, A030078, A050997, A054753, A092759, A179643, A179665, A246551.

%K nonn,changed

%O 1,1

%A _Chris Boyd_, Sep 14 2013