login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027002
a(n) = T(2*n, n+3), T given by A026998.
1
1, 43, 431, 2482, 10636, 38138, 122069, 362853, 1027843, 2822668, 7601784, 20228876, 53447609, 140633575, 369179479, 967898846, 2535852052, 6641420806, 17390705661, 45533644161, 119213967867, 312112955384, 817130734512, 2139286435768, 5600737350897
OFFSET
3,2
FORMULA
G.f.: x^3*(1+34*x+78*x^2-6*x^3-11*x^4) / ((1-x)^6*(1-3*x+x^2)). - Colin Barker, Feb 18 2016
From Robert Israel, Feb 18 2016: (Start)
By definition, a(n) is the coefficient of x^(2*n-6) in the Maclaurin series of (1+2*x)/((1-x-x^2)*(1-x)^6). This can be written explicitly:
a(n) = ((29-13*sqrt(5))/2)*((3-sqrt(5))/2)^n + ((29+13*sqrt(5))/2)*((3+sqrt(5))/2)^n - (4/5)*n^5 + (4/3)*n^4 - (25/3)*n^3 - (31/3)*n^2 - (433/15)*n - 29.
This confirms Colin Barker's g.f. (End)
MAPLE
gf:= x^3*(1+34*x+78*x^2-6*x^3-11*x^4) / ((1-x)^6*(1-3*x+x^2)):
S:= series(gf, x, 100):
seq(coeff(S, x, n), n=3..100); # Robert Israel, Feb 18 2016
MATHEMATICA
LinearRecurrence[{9, -34, 71, -90, 71, -34, 9, -1}, {1, 43, 431, 2482, 10636, 38138, 122069, 362853}, 30] (* Vincenzo Librandi, Feb 19 2016 *)
PROG
(PARI) Vec(x^3*(1+34*x+78*x^2-6*x^3-11*x^4)/((1-x)^6*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
CROSSREFS
Sequence in context: A142841 A142913 A228908 * A093673 A244769 A239268
KEYWORD
nonn
STATUS
approved