OFFSET
0,3
COMMENTS
A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..750
FORMULA
G.f.: -(45*x^18 +330*x^17 -3649*x^16 +872*x^15 +13497*x^14 -31638*x^13 +33844*x^12 +87562*x^11 -231307*x^10 -22714*x^9 +206771*x^8 -57002*x^7 -8736*x^6 +7970*x^5 -2193*x^4 -364*x^3 +145*x^2 +10*x-1) / (585*x^20 +4335*x^19 -47413*x^18 +4273*x^17 +187195*x^16 -352817*x^15 +385178*x^14 +1070602*x^13 -2911442*x^12 -370773*x^11 +2929813*x^10 -729299*x^9 -407618*x^8 +200422*x^7 -19642*x^6 -15983*x^5 +4787*x^4 +563*x^3 -177*x^2 -11*x+1).
MAPLE
gf:= -(45*x^18 +330*x^17 -3649*x^16 +872*x^15 +13497*x^14 -31638*x^13 +33844*x^12 +87562*x^11 -231307*x^10 -22714*x^9 +206771*x^8 -57002*x^7 -8736*x^6 +7970*x^5 -2193*x^4 -364*x^3 +145*x^2 +10*x-1) /
(585*x^20 +4335*x^19 -47413*x^18 +4273*x^17 +187195*x^16 -352817*x^15 +385178*x^14 +1070602*x^13 -2911442*x^12 -370773*x^11 +2929813*x^10 -729299*x^9 -407618*x^8 +200422*x^7 -19642*x^6 -15983*x^5 +4787*x^4 +563*x^3 -177*x^2 -11*x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 13 2014
STATUS
approved