OFFSET
2,2
LINKS
Colin Barker, Table of n, a(n) for n = 2..1000
Index entries for linear recurrences with constant coefficients, signature (7,-19,26,-19,7,-1).
FORMULA
a(n-2) = 3*F(2n+10)-2*F(2n+9)-F(2n+8)-4n^3-26n^2-68n-75, F(n) = A000045(n). - Ralf Stephan, Feb 07 2004
From Colin Barker, Feb 18 2016: (Start)
a(n) = (2^(-1-n)*(-11*2^(1+n)+(11-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(11+5*sqrt(5)))-12*n-2*n^2-4*n^3).
G.f.: x^2*(1+x)*(1+18*x-7*x^2) / ((1-x)^4*(1-3*x+x^2)).
(End)
MATHEMATICA
LinearRecurrence[{7, -19, 26, -19, 7, -1}, {1, 26, 174, 743, 2552, 7784}, 30] (* Vincenzo Librandi, Feb 19 2016 *)
PROG
(PARI) Vec(x^2*(1+x)*(1+18*x-7*x^2)/((1-x)^4*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 18 2016
(Magma) [3*Fibonacci(2*n+10)-2*Fibonacci(2*n+9)-Fibonacci(2*n+8)-4*n^3-26*n^2-68*n-75: n in [0..30]]; // Vincenzo Librandi, Feb 19 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved