login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(2*n, n+2), T given by A026998.
1

%I #14 Sep 08 2022 08:44:49

%S 1,26,174,743,2552,7784,22193,60882,163430,433495,1142496,3001056,

%T 7869649,20619098,54001422,141401879,370224248,969294632,2537687585,

%U 6643800690,17393752166,45537499111,119218794624,312118940928,817138091617,2139295405274

%N a(n) = T(2*n, n+2), T given by A026998.

%H Colin Barker, <a href="/A027001/b027001.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (7,-19,26,-19,7,-1).

%F a(n-2) = 3*F(2n+10)-2*F(2n+9)-F(2n+8)-4n^3-26n^2-68n-75, F(n) = A000045(n). - _Ralf Stephan_, Feb 07 2004

%F From _Colin Barker_, Feb 18 2016: (Start)

%F a(n) = (2^(-1-n)*(-11*2^(1+n)+(11-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(11+5*sqrt(5)))-12*n-2*n^2-4*n^3).

%F G.f.: x^2*(1+x)*(1+18*x-7*x^2) / ((1-x)^4*(1-3*x+x^2)).

%F (End)

%t LinearRecurrence[{7, -19, 26, -19, 7, -1}, {1, 26, 174, 743, 2552, 7784}, 30] (* _Vincenzo Librandi_, Feb 19 2016 *)

%o (PARI) Vec(x^2*(1+x)*(1+18*x-7*x^2)/((1-x)^4*(1-3*x+x^2)) + O(x^40)) \\ _Colin Barker_, Feb 18 2016

%o (Magma) [3*Fibonacci(2*n+10)-2*Fibonacci(2*n+9)-Fibonacci(2*n+8)-4*n^3-26*n^2-68*n-75: n in [0..30]]; // _Vincenzo Librandi_, Feb 19 2016

%Y Bisection of A027964.

%K nonn,easy

%O 2,2

%A _Clark Kimberling_