login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014920
a(1)=1, a(n) = n*7^(n-1) + a(n-1).
3
1, 15, 162, 1534, 13539, 114381, 937924, 7526268, 59409477, 462945547, 3570173286, 27298094202, 207234827815, 1563680973513, 11737027066248, 87698011225336, 652657830908553, 4840007082678279, 35779865442976810
OFFSET
1,2
FORMULA
a(1)=1, a(2)=15, a(n) = 14*a(n-1) - 49*a(n-2) + 1. - Vincenzo Librandi, Oct 23 2012
G.f.: x/((1-x)*(1-7*x)^2). - Vincenzo Librandi, Oct 23 2012
a(n) = (1/36)*(1 + 7^n*(6*n-1)). - Vincenzo Librandi, Oct 26 2012
a(1)=1, a(2)=15, a(3)=162, a(n) = 15*a(n-1) - 63*a(n-2) + 49*a(n-3). - Harvey P. Dale, Jun 26 2013
MAPLE
a:=n->sum (7^n-7^j, j=0..n): seq(a(n)/6, n=1..21); # Zerinvary Lajos, Dec 14 2008
MATHEMATICA
CoefficientList[Series[1/((1 - x)(1 - 7*x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 23 2012 *)
LinearRecurrence[{15, -63, 49}, {1, 15, 162}, 30] (* Harvey P. Dale, Jun 26 2013 *)
PROG
(Magma) I:=[1, 15]; [n le 2 select I[n] else 14*Self(n-1)-49*Self(n-2)+1: n in [1..30]]; // Vincenzo Librandi, Oct 23 2012
(Magma) [(1/36)*(1+7^n*(6*n-1)): n in [1..20]]; // Vincenzo Librandi, Oct 26 2012
CROSSREFS
Sequence in context: A263514 A323292 A067361 * A081034 A279157 A016243
KEYWORD
nonn,easy
STATUS
approved