Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:44:39
%S 1,15,162,1534,13539,114381,937924,7526268,59409477,462945547,
%T 3570173286,27298094202,207234827815,1563680973513,11737027066248,
%U 87698011225336,652657830908553,4840007082678279,35779865442976810
%N a(1)=1, a(n) = n*7^(n-1) + a(n-1).
%H Vincenzo Librandi, <a href="/A014920/b014920.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15, -63, 49).
%F a(1)=1, a(2)=15, a(n) = 14*a(n-1) - 49*a(n-2) + 1. - _Vincenzo Librandi_, Oct 23 2012
%F G.f.: x/((1-x)*(1-7*x)^2). - _Vincenzo Librandi_, Oct 23 2012
%F a(n) = (1/36)*(1 + 7^n*(6*n-1)). - _Vincenzo Librandi_, Oct 26 2012
%F a(1)=1, a(2)=15, a(3)=162, a(n) = 15*a(n-1) - 63*a(n-2) + 49*a(n-3). - _Harvey P. Dale_, Jun 26 2013
%p a:=n->sum (7^n-7^j, j=0..n): seq(a(n)/6, n=1..21); # _Zerinvary Lajos_, Dec 14 2008
%t CoefficientList[Series[1/((1 - x)(1 - 7*x)^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 23 2012 *)
%t LinearRecurrence[{15,-63,49},{1,15,162},30] (* _Harvey P. Dale_, Jun 26 2013 *)
%o (Magma) I:=[1, 15]; [n le 2 select I[n] else 14*Self(n-1)-49*Self(n-2)+1: n in [1..30]]; // _Vincenzo Librandi_, Oct 23 2012
%o (Magma) [(1/36)*(1+7^n*(6*n-1)): n in [1..20]]; // _Vincenzo Librandi_, Oct 26 2012
%K nonn,easy
%O 1,2
%A _Olivier Gérard_