OFFSET
1,2
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..10000
FORMULA
a(2n-1) = n(2n-1).
a(2^n) = 2^n. - Ivan Neretin, May 17 2015
a(n) = n*k + n - (k^2+k)/2 where k is the greatest integer <= n with k*(k+1) divisible by 2*n. k = n iff n is odd. - Robert Israel, May 17 2015
MAPLE
F:= proc(n) local k, R;
k:= max(map(t -> `if`(t[1]<= n, t[1], NULL), Roots(k*(k+1)) mod (2*n)));
n*k + n - (k^2+k)/2;
end proc:
map(F, [$1..100]); # Robert Israel, May 17 2015
MATHEMATICA
Table[Max[Select[n (n + 1)/2 - # (# - 1)/2 & /@ Range[n], Divisible[#, n] &]], {n, 55}] (* Ivan Neretin, May 17 2015 *)
PROG
;; PLT DrScheme (Zucker)
(define (A110346 n)
(apply max (filter (lambda (x) (= 0 (remainder x n)))
(build-list n (lambda (k) (apply + (build-list (add1 k) (lambda (j) (- n j)))))))))
;; yes, it would be faster to use n(n+1)/2 - k(k+1)/2 instead of summing.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Jul 20 2005
EXTENSIONS
More terms from Joshua Zucker, May 09 2006
STATUS
approved