
EXAMPLE

T(1,1) = 5 because 5 is the start of the first "run" of exactly 1 integer having exactly 2*1=2 divisors (5 is the first prime p such that both p1 and p+1 are nonprime);
T(1,2) = 2 because 2 is the start of the first run of exactly 2 consecutive integers having exactly 2*1=2 divisors (2 and 3 are the only consecutive integers that are prime);
T(3,4) = 242 because the first run of exactly 4 consecutive integers having exactly 2*3=6 divisors is 242 = 2*11^2, 243 = 3^5, 244 = 2^2*61, 245 = 5*7^2.
Table begins:
n T(n,1), T(n,2), ...
== ========================================================
1 5, 2;
2 6, 14, 33;
3 12, 44, 603, 242, 10093613546512321;
4 24, 104, 230, 3655, 11605, 28374, 171893;
5 48, 2511, 7939375;
6 60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346, 120402988681658048433948, T(6,13), ...;
7 192, 29888, 76571890623;
8 120, 2295, 8294, 153543, 178086, 5852870, 17476613;
9 180, 6075, 959075, 66251139635486389922, T(9,5);
10 240, 5264, 248750, 31805261872, 1428502133048749, 8384279951009420621, 189725682777797295066519373;
11 3072, 2200933376, 104228508212890623;
12 360, 5984, 72224, 2919123, 15537948, 973277147, 33815574876, 1043710445721, 2197379769820, 2642166652554075, 17707503256664346, T(12,12), ...;
13 12288, 689278976, 1489106237081787109375;
14 960, 156735, 23513890624, 4094170438109373, 55644509293039461218749, 4230767238315793911295500109374, 273404501868270838132985214432619890621;
15 720, 180224, 145705879375, 10868740069638250502059754282498, T(15,5);
16 840, 21735, 318680, 6800934, 57645182, 1194435205, 14492398389;
...
