login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075036
Smaller of two smallest consecutive numbers with 2n divisors.
8
2, 14, 44, 104, 2511, 735, 29888, 2295, 6075, 5264, 2200933376, 5984, 689278976, 156735, 180224, 21735, 2035980763136, 223244, 9399153082499072, 458864, 41680575, 701443071, 2503092614937444351, 201824, 2707370000, 29785673727, 46977524, 5475519, 1737797404898095794225152
OFFSET
1,1
COMMENTS
There cannot be two consecutive numbers with the same odd number of divisors as both cannot be squares.
These numbers have the property that a(n) * (a(n) + 1) has 4*n^2 divisors. - David A. Corneth, Jun 24 2016
Conjecture: if a term k is even, the highest p-adic order of k (the maximum may be attained by several p's) occurs at p=2 and the highest p-adic order of k+1 occurs at p=3. If a term k is odd, the highest p-adic order of k occurs at p=3 and the highest p-adic order of k+1 occurs at p=2. - Chai Wah Wu, Mar 12 2019
a(49) = 378401464109375, a(58) = 79921490583489592950783. - Jon E. Schoenfield, May 07 2022
a(51) = 34210814718574592, a(55) = 2481402804069375, a(57) = 394311388855795712. - Jon E. Schoenfield, Nov 06 2023 - Nov 08 2023
FORMULA
a(n) <= A215199(n-1) for n > 1. Conjecture: if p is prime, then a(p) = A215199(p-1). This conjecture is true if the conjecture in A215199 is true. The b-file of A215199 thus shows that a(p) = A215199(p-1) for prime p < 1279. - Chai Wah Wu, Mar 12 2019
EXAMPLE
a(4) = 104 as tau(104) = tau(105) = 8.
MATHEMATICA
a[n_] := (For[k=1, ! (DivisorSigma[0, k] == 2*n && DivisorSigma[0, k+1] == 2*n), k++]; k); Array[a, 10] (* Giovanni Resta, Jun 24 2016 *)
PROG
(PARI) a(n) = my(k=1); while(numdiv(k)!=2*n || numdiv(k+1)!=2*n, k++); k \\ Felix Fröhlich, Jun 24 2016
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 03 2002
EXTENSIONS
a(5)-a(24) from Max Alekseyev, Mar 12 2009
a(25)-a(28) from Giovanni Resta, Jun 24 2016
a(29) from Chai Wah Wu, Mar 12 2019
STATUS
approved