login
A075035
Numbers n such that tau(n) >= tau(n+1) >= tau(n+2) >= tau(n+3) where tau(n) = number of divisors of n.
4
20, 32, 44, 56, 80, 84, 92, 104, 116, 140, 170, 176, 200, 212, 216, 224, 230, 242, 260, 296, 300, 324, 332, 344, 374, 380, 392, 434, 440, 444, 464, 476, 500, 506, 512, 560, 594, 602, 608, 620, 632, 644, 650, 696, 704, 714, 715, 716, 740, 776, 800, 804, 836
OFFSET
1,1
LINKS
MATHEMATICA
Position[Partition[DivisorSigma[0, Range[900]], 4, 1], _?(Max[ Differences[ #]]< 1&), 1, Heads->False]//Flatten (* Harvey P. Dale, Sep 05 2019 *)
PROG
(Python)
from sympy import divisor_count as tau
[n for n in range(1, 901) if tau(n) >= tau(n+1) >= tau(n+2) >= tau(n+3)] # Karl V. Keller, Jr., Jul 10 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 02 2002
EXTENSIONS
More terms from Benoit Cloitre, Sep 07 2002
STATUS
approved