login
A131580
Least prime P such that P^(2*prime(n))-P^prime(n)-1 is prime with prime(n) the n-th prime.
1
2, 3, 2, 3, 163, 19, 151, 263, 131, 3041, 311, 401, 2029, 1163, 2309, 157, 541, 61, 739, 563, 1097, 4813, 1801, 1399, 709, 317, 14563, 863, 5479, 337, 2351, 9533, 4931, 401, 1117, 14639, 17791, 1409, 571, 5171, 16633, 7001, 2129, 10891, 31151, 22709, 6079, 883, 20113
OFFSET
1,1
LINKS
EXAMPLE
2^(2*2)-2^2-1=11 prime, 2 is prime, so P = a(1) = 2.
2^(2*3)-2^3-1=55 composite; 3^(2*3)-3^3-1=701 prime, 3 is prime so P = a(2) = 3.
PROG
(PARI) a(n) = my(p = prime(n), P=2); while(!isprime(P^(2*p)-P^p-1), P = nextprime(P+1)); P; \\ Michel Marcus, Sep 15 2019
(Magma) sol:=[]; for n in [1..31] do p:=2; while not IsPrime(p^(2*q)-p^ NthPrime(n)-1) where q is NthPrime(n) do p:=NextPrime(p); end while; Append(~sol, p); end for; sol; // Marius A. Burtea, Sep 15 2019
CROSSREFS
Sequence in context: A177799 A125767 A326991 * A087038 A299115 A179590
KEYWORD
nonn
AUTHOR
Pierre CAMI, Aug 29 2007
EXTENSIONS
a(33)-a(49) from Daniel Suteu, Sep 15 2019
STATUS
approved