login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120617
Hankel transform of g.f. 1/sqrt(1+4x^2).
5
1, -2, -4, 8, 16, -32, -64, 128, 256, -512, -1024, 2048, 4096, -8192, -16384, 32768, 65536, -131072, -262144, 524288, 1048576, -2097152, -4194304, 8388608, 16777216, -33554432, -67108864, 134217728, 268435456, -536870912, -1073741824, 2147483648, 4294967296, -8589934592
OFFSET
0,2
COMMENTS
Hankel transform of e.g.f. Bessel_I(0,2*sqrt(-1)*x) or (1,0,-2,0,6,0,-20,...).
Hankel transform of Sum{k=0..n} (-1)^(n-k)*C(n,k)^2.
Hankel transform of A098331.
Hankel transform of A082590. - Paul Barry, Apr 26 2009
FORMULA
G.f.: (1-2*x)/(1+4*x^2); a(n) = 2^n*(cos(Pi*(n+1)/2)+sin(Pi*(n+1)/2)).
a(0)=1, a(1)=-2, a(n)=-4*a(n-2). - Harvey P. Dale, Oct 12 2011
a(n) = ( 2*i^(n+1) )^n, where i=sqrt(-1). - Bruno Berselli, Oct 12 2011
E.g.f.: cos(2*x) - sin(2*x). - Arkadiusz Wesolowski, Aug 31 2012
MATHEMATICA
LinearRecurrence[{0, -4}, {1, -2}, 40] (* or *) CoefficientList[ Series[ (1-2x)/(1+4x^2), {x, 0, 40}], x] (* Harvey P. Dale, Oct 12 2011 *)
CROSSREFS
Sequence in context: A084633 A000079 A011782 * A131577 A155559 A166444
KEYWORD
sign,easy
AUTHOR
Paul Barry, Jun 17 2006
STATUS
approved