The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A288947 Number of maximal cliques in the n X n queen graph. 0
 1, 1, 10, 36, 76, 129, 210, 310, 452, 619, 842, 1096, 1420, 1781, 2226, 2714, 3300, 3935, 4682, 5484, 6412, 7401, 8530, 9726, 11076, 12499, 14090, 15760, 17612, 19549, 21682, 23906, 26340, 28871, 31626, 34484, 37580, 40785, 44242, 47814 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Eric Weisstein's World of Mathematics, Maximal Clique Eric Weisstein's World of Mathematics, Queen Graph Index entries for linear recurrences with constant coefficients, signature (2, 1, -4, 1, 2, -1). FORMULA For n>3, a(n) = n*(73-3*(-1)^n+4*n*(2*n-3))/12-14. For n>3, a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6). G.f.: -((x^2*(-1+x-7*x^2-19*x^3+3*x^4+22*x^5-9*x^6-10*x^7+4*x^8))/((-1+x)^4*(1+x)^2)). MATHEMATICA Table[Piecewise[{{1, n < 3}, {10, n == 3}}, n (73 - 3 (-1)^n + 4 n (2 n - 3))/12 - 14], {n, 20}] Join[{1, 1}, LinearRecurrence[{2, 1, -4, 1, 2, -1}, {-28, -9, 10, 36, 76, 129}, {3, 20}]] CoefficientList[Series[(1 - x + 7 x^2 + 19 x^3 - 3 x^4 - 22 x^5 + 9 x^6 + 10 x^7 - 4 x^8)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] CROSSREFS Sequence in context: A309783 A072517 A271912 * A328146 A033585 A118629 Adjacent sequences:  A288944 A288945 A288946 * A288948 A288949 A288950 KEYWORD nonn AUTHOR Eric W. Weisstein, Jun 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 12:15 EDT 2020. Contains 337431 sequences. (Running on oeis4.)