login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288947
Number of maximal cliques in the n X n queen graph.
0
1, 1, 10, 36, 76, 129, 210, 310, 452, 619, 842, 1096, 1420, 1781, 2226, 2714, 3300, 3935, 4682, 5484, 6412, 7401, 8530, 9726, 11076, 12499, 14090, 15760, 17612, 19549, 21682, 23906, 26340, 28871, 31626, 34484, 37580, 40785, 44242, 47814
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Maximal Clique
Eric Weisstein's World of Mathematics, Queen Graph
FORMULA
For n>3, a(n) = n*(73-3*(-1)^n+4*n*(2*n-3))/12-14.
For n>3, a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
G.f.: -((x^2*(-1+x-7*x^2-19*x^3+3*x^4+22*x^5-9*x^6-10*x^7+4*x^8))/((-1+x)^4*(1+x)^2)).
MATHEMATICA
Table[Piecewise[{{1, n < 3}, {10, n == 3}}, n (73 - 3 (-1)^n + 4 n (2 n - 3))/12 - 14], {n, 20}]
Join[{1, 1}, LinearRecurrence[{2, 1, -4, 1, 2, -1}, {-28, -9, 10, 36, 76, 129}, {3, 20}]]
CoefficientList[Series[(1 - x + 7 x^2 + 19 x^3 - 3 x^4 - 22 x^5 + 9 x^6 + 10 x^7 - 4 x^8)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A309783 A072517 A271912 * A328146 A033585 A118629
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 20 2017
STATUS
approved