Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 22 2017 11:47:20
%S 1,1,10,36,76,129,210,310,452,619,842,1096,1420,1781,2226,2714,3300,
%T 3935,4682,5484,6412,7401,8530,9726,11076,12499,14090,15760,17612,
%U 19549,21682,23906,26340,28871,31626,34484,37580,40785,44242,47814
%N Number of maximal cliques in the n X n queen graph.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalClique.html">Maximal Clique</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QueenGraph.html">Queen Graph</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2, 1, -4, 1, 2, -1).
%F For n>3, a(n) = n*(73-3*(-1)^n+4*n*(2*n-3))/12-14.
%F For n>3, a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
%F G.f.: -((x^2*(-1+x-7*x^2-19*x^3+3*x^4+22*x^5-9*x^6-10*x^7+4*x^8))/((-1+x)^4*(1+x)^2)).
%t Table[Piecewise[{{1, n < 3}, {10, n == 3}}, n (73 - 3 (-1)^n + 4 n (2 n - 3))/12 - 14], {n, 20}]
%t Join[{1, 1}, LinearRecurrence[{2, 1, -4, 1, 2, -1}, {-28, -9, 10, 36, 76, 129}, {3, 20}]]
%t CoefficientList[Series[(1 - x + 7 x^2 + 19 x^3 - 3 x^4 - 22 x^5 + 9 x^6 + 10 x^7 - 4 x^8)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x]
%K nonn
%O 1,3
%A _Eric W. Weisstein_, Jun 20 2017