OFFSET
1,2
LINKS
Chai Wah Wu, Counting the number of isosceles triangles in rectangular regular grids, arXiv:1605.00180 [math.CO], 2016.
Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 1).
FORMULA
Conjectured g.f.: 2*x*(2*x^4+4*x^3+2*x^2-8*x-5)/((x+1)*(x-1)^3).
Conjectured recurrence: a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n > 6.
Conjectures from Colin Barker, Apr 25 2016: (Start)
a(n) = (-3*(47+(-1)^n)+64*n+10*n^2)/4 for n>2.
a(n) = (5*n^2+32*n-72)/2 for n>2 and even.
a(n) = (5*n^2+32*n-69)/2 for n>2 and odd.
(End)
The conjectured g.f. and recurrence are true. See paper in links. - Chai Wah Wu, May 07 2016
EXAMPLE
n=2: Label the points
1 2 3
4 5 6
There are 8 small isosceles triangles like 124 plus 135 and 246, so a(2) = 10.
MATHEMATICA
Join[{0, 10}, LinearRecurrence[{2, 0, -2, 1}, {36, 68, 108, 150}, 50]] (* Jean-François Alcover, Oct 10 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 24 2016
EXTENSIONS
More terms from Jean-François Alcover, Oct 10 2018
STATUS
approved