login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271913
Number of ways to choose three distinct points from a 4 X n grid so that they form an isosceles triangle.
4
0, 16, 68, 148, 248, 360, 488, 620, 768, 924, 1096, 1272, 1464, 1660, 1872, 2088, 2320, 2556, 2808, 3064, 3336, 3612, 3904, 4200, 4512, 4828, 5160, 5496, 5848, 6204, 6576, 6952, 7344, 7740, 8152, 8568, 9000, 9436, 9888, 10344, 10816, 11292, 11784, 12280, 12792, 13308, 13840, 14376, 14928, 15484
OFFSET
1,2
FORMULA
Conjectured g.f.: 4*x*(x^10-x^8+2*x^6+x^5+4*x^4+4*x^3-3*x^2-9*x-4)/((x+1)*(x-1)^3).
Conjectured recurrence: a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n > 12.
Conjectures from Colin Barker, Apr 25 2016: (Start)
a(n) = -3/2*(143+(-1)^n)+64*n+5*n^2 for n>8.
a(n) = 5*n^2+64*n-216 for n>8 and even.
a(n) = 5*n^2+64*n-213 for n>8 and odd.
(End)
The conjectured g.f. and recurrence are true. See paper in links. - Chai Wah Wu, May 07 2016
MATHEMATICA
Join[{0, 16, 68, 148, 248, 360, 488, 620}, LinearRecurrence[{2, 0, -2, 1}, {768, 924, 1096, 1272}, 42]] (* Jean-François Alcover, Sep 03 2018 *)
CROSSREFS
Row 4 of A271910.
Sequence in context: A321180 A100186 A344600 * A178574 A005906 A247663
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 24 2016
EXTENSIONS
More terms from Jean-François Alcover, Sep 03 2018
STATUS
approved