login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321180
a(n) = 17*n^2 - 1.
1
-1, 16, 67, 152, 271, 424, 611, 832, 1087, 1376, 1699, 2056, 2447, 2872, 3331, 3824, 4351, 4912, 5507, 6136, 6799, 7496, 8227, 8992, 9791, 10624, 11491, 12392, 13327, 14296, 15299, 16336, 17407, 18512, 19651, 20824
OFFSET
0,2
COMMENTS
a(n) mod 9 = period 9: repeat [8, 7, 4, 8, 1, 1, 8, 4, 7] = A254375(n+5).
1020 = 2*2*15*17.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A244630(n) - 1.
a(n+1) = a(n) + 17*(2n+1).
a(n+10) = a(n) + 10*A061085(n+5).
a(n+15) = a(15-n) + 1020*n.
G.f.: (1 - 19*x - 16*x^2)/(-1 + x)^3. - Stefano Spezia, Oct 29 2018
MATHEMATICA
a[n_]:=17*n^2 - 1; Array[a, 50] (* or *)
CoefficientList[Series[(1 - 19 x - 16 x^2)/(-1 + x)^3, {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
LinearRecurrence[{3, -3, 1}, {-1, 16, 67}, 40] (* Harvey P. Dale, Jul 03 2021 *)
PROG
(PARI) a(n)=17*n^2-1 \\ Charles R Greathouse IV, Oct 30 2018
(PARI) Vec((1 - 19*x - 16*x^2)/(-1 + x)^3 + O(x^50)) \\ Colin Barker, Oct 31 2018
CROSSREFS
KEYWORD
sign,easy,less
AUTHOR
Paul Curtz, Oct 29 2018
EXTENSIONS
One term corrected by Colin Barker, Oct 29 2018
STATUS
approved