OFFSET
0,3
COMMENTS
Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = (n*(n+1)/2)^2.
EXAMPLE
1* 0^2 + 2*0^2 + 3*0^2 + 4*5^2 = 100.
1* 0^2 + 2*6^2 + 3*2^2 + 4*2^2 = 100.
1* 1^2 + 2*2^2 + 3*3^2 + 4*4^2 = 100.
1* 1^2 + 2*2^2 + 3*5^2 + 4*2^2 = 100.
1* 1^2 + 2*4^2 + 3*1^2 + 4*4^2 = 100.
1* 1^2 + 2*6^2 + 3*3^2 + 4*0^2 = 100.
1* 2^2 + 2*4^2 + 3*0^2 + 4*4^2 = 100.
1* 2^2 + 2*4^2 + 3*4^2 + 4*2^2 = 100.
1* 3^2 + 2*0^2 + 3*3^2 + 4*4^2 = 100.
1* 3^2 + 2*0^2 + 3*5^2 + 4*2^2 = 100.
1* 3^2 + 2*6^2 + 3*1^2 + 4*2^2 = 100.
1* 4^2 + 2*0^2 + 3*4^2 + 4*3^2 = 100.
1* 4^2 + 2*2^2 + 3*2^2 + 4*4^2 = 100.
1* 4^2 + 2*4^2 + 3*4^2 + 4*1^2 = 100.
1* 4^2 + 2*6^2 + 3*2^2 + 4*0^2 = 100.
1* 5^2 + 2*0^2 + 3*5^2 + 4*0^2 = 100.
1* 5^2 + 2*2^2 + 3*1^2 + 4*4^2 = 100.
1* 5^2 + 2*4^2 + 3*3^2 + 4*2^2 = 100.
1* 5^2 + 2*6^2 + 3*1^2 + 4*0^2 = 100.
1* 6^2 + 2*0^2 + 3*0^2 + 4*4^2 = 100.
1* 6^2 + 2*0^2 + 3*4^2 + 4*2^2 = 100.
1* 7^2 + 2*2^2 + 3*3^2 + 4*2^2 = 100.
1* 7^2 + 2*4^2 + 3*1^2 + 4*2^2 = 100.
1* 8^2 + 2*0^2 + 3*0^2 + 4*3^2 = 100.
1* 8^2 + 2*2^2 + 3*2^2 + 4*2^2 = 100.
1* 8^2 + 2*4^2 + 3*0^2 + 4*1^2 = 100.
1* 9^2 + 2*0^2 + 3*1^2 + 4*2^2 = 100.
1*10^2 + 2*0^2 + 3*0^2 + 4*0^2 = 100.
So a(4) = 28.
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 29 2018
EXTENSIONS
a(17)-a(20) from Alois P. Heinz, Oct 29 2018
STATUS
approved