This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050509 House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i. 4
 1, 10, 36, 88, 175, 306, 490, 736, 1053, 1450, 1936, 2520, 3211, 4018, 4950, 6016, 7225, 8586, 10108, 11800, 13671, 15730, 17986, 20448, 23125, 26026, 29160, 32536, 36163, 40050, 44206, 48640, 53361, 58378, 63700, 69336, 75295, 81586, 88218 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also as a(n)=(1/6)*(9*n^3-3*n^2), n>0: structured pentagonal prism numbers (Cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004 Number of inequivalent tetrahedral edge colorings using at most n+1 colors so that no color appears only once. - David Nacin, Feb 22 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..5000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = A000578(n+1) + (n+1)*A000217(n). a(n) = (1/2) *(3*n+2)*(n+1)^2. a(0)=1, a(1)=10, a(2)=36, a(3)=88, a(n)=4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - Harvey P. Dale, Jun 26 2011 G.f.: (1+6*x+2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012 a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - Bruno Berselli, Sep 08 2015 Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - Vaclav Kotesovec, Oct 04 2016 EXAMPLE ....... * ... * a(2) = * * + * * = 10. ...... * * . * * MATHEMATICA Table[((1+n)^2*(2+3n))/2, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 36, 88}, 40] (* Harvey P. Dale, Jun 26 2011 *) PROG (MAGMA) [(3*n+2)*(n+1)^2/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011 (PARI) a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A000217, A000578, A051662. Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000. Sequence in context: A328146 A033585 A118629 * A211057 A118415 A051959 Adjacent sequences:  A050506 A050507 A050508 * A050510 A050511 A050512 KEYWORD nonn,nice,easy AUTHOR Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 23:54 EDT 2019. Contains 328038 sequences. (Running on oeis4.)