login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050509
House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i.
5
1, 10, 36, 88, 175, 306, 490, 736, 1053, 1450, 1936, 2520, 3211, 4018, 4950, 6016, 7225, 8586, 10108, 11800, 13671, 15730, 17986, 20448, 23125, 26026, 29160, 32536, 36163, 40050, 44206, 48640, 53361, 58378, 63700, 69336, 75295, 81586, 88218
OFFSET
0,2
COMMENTS
Also as a(n) = (1/6)*(9*n^3-3*n^2), n>0: structured pentagonal prism numbers (Cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of inequivalent tetrahedral edge colorings using at most n+1 colors so that no color appears only once. - David Nacin, Feb 22 2017
FORMULA
a(n) = A000578(n+1) + (n+1)*A000217(n).
a(n) = (1/2) *(3*n+2)*(n+1)^2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=10, a(2)=36, a(3)=88. - Harvey P. Dale, Jun 26 2011
G.f.: (1+6*x+2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - Vaclav Kotesovec, Oct 04 2016
EXAMPLE
* *
a(2) = * * + * * = 10.
* * * *
MATHEMATICA
Table[((1+n)^2*(2+3n))/2, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 36, 88}, 40] (* Harvey P. Dale, Jun 26 2011 *)
PROG
(Magma) [(3*n+2)*(n+1)^2/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
(PARI) a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.
Sequence in context: A328146 A033585 A118629 * A211057 A118415 A051959
KEYWORD
nonn,nice,easy
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999
STATUS
approved