Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Feb 17 2022 03:56:14
%S 1,10,36,88,175,306,490,736,1053,1450,1936,2520,3211,4018,4950,6016,
%T 7225,8586,10108,11800,13671,15730,17986,20448,23125,26026,29160,
%U 32536,36163,40050,44206,48640,53361,58378,63700,69336,75295,81586,88218
%N House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i.
%C Also as a(n) = (1/6)*(9*n^3-3*n^2), n>0: structured pentagonal prism numbers (Cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
%C Number of inequivalent tetrahedral edge colorings using at most n+1 colors so that no color appears only once. - _David Nacin_, Feb 22 2017
%H Vincenzo Librandi, <a href="/A050509/b050509.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = A000578(n+1) + (n+1)*A000217(n).
%F a(n) = (1/2) *(3*n+2)*(n+1)^2.
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=10, a(2)=36, a(3)=88. - _Harvey P. Dale_, Jun 26 2011
%F G.f.: (1+6*x+2*x^2)/(1-x)^4. - _Colin Barker_, Jun 08 2012
%F a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - _Bruno Berselli_, Sep 08 2015
%F Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - _Vaclav Kotesovec_, Oct 04 2016
%e * *
%e a(2) = * * + * * = 10.
%e * * * *
%t Table[((1+n)^2*(2+3n))/2,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,10,36,88},40] (* _Harvey P. Dale_, Jun 26 2011 *)
%o (Magma) [(3*n+2)*(n+1)^2/2: n in [0..40]]; // _Vincenzo Librandi_, Jul 19 2011
%o (PARI) a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A000217, A000578, A051662.
%Y Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.
%K nonn,nice,easy
%O 0,2
%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999