OFFSET
0,3
COMMENTS
Also, structured enneagonal prism numbers.
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(1 + 14*x + 6*x^2)/(1 - x)^4.
a(n) = Sum_{i=0..n-1} n*(7*i+1) for n>0, a(0)=0.
a(n+1) + a(-n) = A069125(n+1).
Sum_{i>0} 1/a(i) = 1.082675669875907610300284768825... = (42*(log(14) + 2*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14))) + 21*Pi*tan(3*Pi/14))/75 - Pi^2/15. - Vaclav Kotesovec, Oct 04 2016
EXAMPLE
For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
MATHEMATICA
Table[n^2 (7 n - 5)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 18, 72}, 50] (* Harvey P. Dale, Oct 04 2016 *)
PROG
(PARI) vector(40, n, n--; n^2*(7*n-5)/2)
(Sage) [n^2*(7*n-5)/2 for n in (0..40)]
(Magma) [n^2*(7*n-5)/2: n in [0..40]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Sep 08 2015
STATUS
approved