OFFSET
1,1
FORMULA
O.g.f.: 1 - 1/G(x) where G(x) is the g.f. of A262001.
EXAMPLE
L.g.f.: L(x) = 2*x + 6*x^2/2 + 28*x^3/3 + 164*x^4/4 + 1132*x^5/5 + 8916*x^6/6 + 78608*x^7/7 + 765904*x^8/8 + 8170752*x^9/9 + 94755776*x^10/10 +...
such that
exp(L(x)) = 1 + 2*x + 10*x^2/2! + 100*x^3/3! + 1700*x^4/4! + 44200*x^5/5! + 1635400*x^6/6! +...+ A101686(n)*x^n/n! +...
where A101686(n) = Product_{k=1..n} (k^2+1).
Also, given the o.g.f. A(x) = Sum_{n>=1} a(n)*x^n,
o.g.f.: A(x) = 2*x + 6*x^2 + 28*x^3 + 164*x^4 + 1132*x^5 + 8916*x^6 +...
then
1/(1 - A(x)) = 1 + 2*x + 10*x^2 + 60*x^3 + 400*x^4 + 2900*x^5 + 22700*x^6 + 191600*x^7 + 1746400*x^8 + 17230000*x^9 + 184348000*x^10 +...+ A262001(n)*x^n +...
PROG
(PARI) {a(n) = n*polcoeff( log(sum(m=0, n+1, x^m/m!*prod(k=1, m, k^2+1)) +x*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 08 2015
STATUS
approved