login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262002
L.g.f.: log( Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^2 + 1) ).
1
2, 6, 28, 164, 1132, 8916, 78608, 765904, 8170752, 94755776, 1187551088, 16004096144, 230910861872, 3553052000336, 58100442762368, 1006457051734784, 18415695160624192, 354980774078690496, 7190981550797464448, 152744987909458781824, 3395058926880381635712, 78814259879097446800256
OFFSET
1,1
FORMULA
O.g.f.: 1 - 1/G(x) where G(x) is the g.f. of A262001.
EXAMPLE
L.g.f.: L(x) = 2*x + 6*x^2/2 + 28*x^3/3 + 164*x^4/4 + 1132*x^5/5 + 8916*x^6/6 + 78608*x^7/7 + 765904*x^8/8 + 8170752*x^9/9 + 94755776*x^10/10 +...
such that
exp(L(x)) = 1 + 2*x + 10*x^2/2! + 100*x^3/3! + 1700*x^4/4! + 44200*x^5/5! + 1635400*x^6/6! +...+ A101686(n)*x^n/n! +...
where A101686(n) = Product_{k=1..n} (k^2+1).
Also, given the o.g.f. A(x) = Sum_{n>=1} a(n)*x^n,
o.g.f.: A(x) = 2*x + 6*x^2 + 28*x^3 + 164*x^4 + 1132*x^5 + 8916*x^6 +...
then
1/(1 - A(x)) = 1 + 2*x + 10*x^2 + 60*x^3 + 400*x^4 + 2900*x^5 + 22700*x^6 + 191600*x^7 + 1746400*x^8 + 17230000*x^9 + 184348000*x^10 +...+ A262001(n)*x^n +...
PROG
(PARI) {a(n) = n*polcoeff( log(sum(m=0, n+1, x^m/m!*prod(k=1, m, k^2+1)) +x*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A358265 A356633 A109570 * A245633 A345367 A156626
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 08 2015
STATUS
approved