login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156626
a(0)=1; a(1)=2; a(2)=6; a(n+1) = 2*(n+1)*a(n) - n^2*a(n-1), n > 1.
1
1, 2, 6, 28, 170, 1252, 10774, 105764, 1164298, 14188468, 189461222, 2749300084, 43058394154, 723619035908, 12984464393398, 247704600763972, 5005042735932554, 106759075226130004, 2396869357456172038, 56491095210068416148, 1394373970361058540202
OFFSET
0,2
LINKS
MAPLE
A156626 := proc(n)
if n<=1 then
n+1 ;
elif n = 2 then
6 ;
else
2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
end if;
end proc:
seq(A156626(n), n=0..20) ; # R. J. Mathar, Sep 27 2011
MATHEMATICA
Join[{1}, RecurrenceTable[{a[n] == 2*n*a[n-1] - (n-1)^2*a[n-2], a[1] == 2, a[2] == 6}, a, {n, 1, 50}]] (* G. C. Greubel, Sep 01 2018 *)
PROG
(PARI) m=30; v=concat([2, 6], vector(m-2)); for(n=3, m, v[n] = 2*n*v[n-1]-(n-1)^2*v[n-2]); concat([1], v) \\ G. C. Greubel, Sep 01 2018
(Magma) I:=[2, 6]; [1] cat [n le 2 select I[n] else 2*n*Self(n-1) - (n-1)^2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 01 2018
CROSSREFS
Sequence in context: A262002 A245633 A345367 * A207386 A088501 A140092
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 12 2009
STATUS
approved