OFFSET
0,3
COMMENTS
Structured hexagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of divisors of 60^(n-1) for n>0. - J. Lowell, Aug 30 2008
The sum of the 2*n+1 numbers between n*(n+1) and (n+1)*(n+2) gives a(n+1). - J. M. Bergot, Apr 17 2013
Partial sums of A080859. - J. M. Bergot, Jul 03 2013
a(n) = number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent. - Indranil Ghosh, Dec 26 2016
Number of additions and multiplications needed to multiply two n X n matrices naively. - Charles R Greathouse IV, Jan 19 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
M. Janjic and B. Petkovic, A counting function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = A199771(2*n-1) for n > 0. - Reinhard Zumkeller, Nov 23 2011
G.f.: x*(1+8*x+3*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 12, a(0)=1, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
E.g.f.: x*(2*x^2 + 5*x + 1)*exp(x). - G. C. Greubel, Jul 31 2015
a(n) = Sum_{i=0..n-1} n*(4*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 4*log(2) - Pi^2/6. - Vaclav Kotesovec, Oct 04 2016
a(n) = Sum_{i=n^2-n+1..n^2+n-1} i. - Wesley Ivan Hurt, Dec 27 2016
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have (2*x - 1)*x^2 = Sum_{n >= 0} ((n+1)^5 + n^5)*a(n,x) and (2*x - 1)*x = Sum_{n >= 0} ((n+1)^4 - n^4)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 2. See the Bala link in A036970. Cf. A272378. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi - Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 12 2020
MAPLE
[(2*n-1)*n^2$n=0..40]; # Muniru A Asiru, Feb 05 2019
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[2]==12, a[n]== 3*a[n-1] - 3*a[n-2] + a[n-3] + 12}, a, {n, 30}] (* G. C. Greubel, Jul 31 2015 *)
Table[(2 n - 1) n^2, {n, 0, 40}] (* Bruno Berselli, Sep 08 2015 *)
PROG
(Magma) [(2*n-1)*n^2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
(PARI) a(n)=(2*n-1)*n^2 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..40], n->(2*n-1)*n^2); # Muniru A Asiru, Feb 05 2019
CROSSREFS
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved