login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015234
a(n) = (17 - 2*n)*n^2.
1
0, 15, 52, 99, 144, 175, 180, 147, 64, -81, -300, -605, -1008, -1521, -2156, -2925, -3840, -4913, -6156, -7581, -9200, -11025, -13068, -15341, -17856, -20625, -23660, -26973, -30576, -34481, -38700, -43245, -48128, -53361
OFFSET
0,2
FORMULA
G.f.: x*(15 - 8*x - 19*x^2)/(1-x)^4. - Ivan Panchenko, Nov 09 2013
From G. C. Greubel, Jul 30 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: x*(15 + 11*x - 2*x^2)*exp(x). (End)
MATHEMATICA
Table[(17 - 2*n)*n^2, {n, 0, 25}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 15, 52, 99}, 25] (* G. C. Greubel, Jul 30 2016 *)
PROG
(PARI) a(n)=(17-2*n)*n^2 \\ Charles R Greathouse IV, Jul 30 2016
CROSSREFS
Sequence in context: A211563 A214522 A118238 * A295339 A346824 A193608
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved