login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (17 - 2*n)*n^2.
1

%I #15 Jul 30 2016 19:56:07

%S 0,15,52,99,144,175,180,147,64,-81,-300,-605,-1008,-1521,-2156,-2925,

%T -3840,-4913,-6156,-7581,-9200,-11025,-13068,-15341,-17856,-20625,

%U -23660,-26973,-30576,-34481,-38700,-43245,-48128,-53361

%N a(n) = (17 - 2*n)*n^2.

%H Ivan Panchenko, <a href="/A015234/b015234.txt">Table of n, a(n) for n = 0..1000</a>

%H R. K. Hoeflin, <a href="http://www.eskimo.com/~miyaguch/mega.html">Mega Test</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: x*(15 - 8*x - 19*x^2)/(1-x)^4. - _Ivan Panchenko_, Nov 09 2013

%F From _G. C. Greubel_, Jul 30 2016: (Start)

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

%F E.g.f.: x*(15 + 11*x - 2*x^2)*exp(x). (End)

%t Table[(17 - 2*n)*n^2, {n,0,25}] (* or *) LinearRecurrence[{4,-6,4,-1},{0, 15, 52, 99},25] (* _G. C. Greubel_, Jul 30 2016 *)

%o (PARI) a(n)=(17-2*n)*n^2 \\ _Charles R Greathouse IV_, Jul 30 2016

%K sign,easy

%O 0,2

%A _N. J. A. Sloane_, Dec 11 1999