OFFSET
1,3
COMMENTS
Another version of triangle T(n,k), 0 <= k <= n, read by rows; given by [0, 1, 2, 4, 6, 9, 12, 16, 20, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] = 1; 0, 1; 0, 1, 2; 0, 3, 8, 6; 0, 17, 54, 60, 24; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 07 2004
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
Peter Bala, The Gandhi polynomials as hypergeometric series
Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
W. D. Cairns, Certain properties of binomial coefficients, Bull. Amer. Math. Soc. 26 (1920), 160-164. See p. 163 for a signed version.
Dominique Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, Discrete Mathematics 1 (1972) 321-327.
Dominique Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
Marc Joye, Pascal Paillier and Berry Schoenmakers, On Second-Order Differential Power Analysis, in Cryptographic Hardware and Embedded Systems-CHES 2005, editors: Josyula R. Rao and Berk Sunar, Lecture Notes in Computer Science 3659 (2005) 293-308, Springer-Verlag.
Arthur Randrianarivony and Jiang Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26.
Hans J. H. Tuenter, Walking into an absolute sum, arXiv:math/0606080 [math.NT], 2006. Published version on Walking into an absolute sum, The Fibonacci Quarterly, 40(2):175-180, May 2002.
FORMULA
Let B(X, n) = X^2 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^2; then the (i, j)-th entry in the table is the coefficient of X^(1+j) in B(X, i). - Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001
From Gary W. Adamson, Jul 19 2011: (Start)
n-th row = top row of M^(n-1), M = an infinite square matrix in which the first "1" and right border of 1's of Pascal's triangle are deleted, as follows:
1, 2, 0, 0, 0, 0, ...
1, 3, 3, 0, 0, 0, ...
1, 4, 6, 4, 0, 0, ...
1, 5, 10, 10, 5, 0, ...
1, 6, 15, 20, 15, 6, ...
...
(End)
Let G(n,x) = (-1)^(n+1)*B(-x,n). Then G(n,x) = (2*x/(x+1))*( 1 + 2^(2*n+1)*(x-1)/(x+2) + 3^(2*n+1)*(x-1)*(x-2)/((x+2)*(x+3)) + ... ). Cf. A083061. - Peter Bala, Feb 04 2019
EXAMPLE
Triangle begins:
1;
1, 2;
3, 8, 6;
17, 54, 60, 24;
155, 556, 762, 480, 120;
...
MAPLE
B[1]:= X -> X^2:
for n from 2 to 12 do B[n]:= unapply(expand(X^2*(B[n-1](X+1)-B[n-1](X))), X) od:
seq(seq(coeff(B[i](X), X, 1+j), j=1..i), i=1..12); # Robert Israel, Apr 21 2016
MATHEMATICA
B[1][X_] = X^2;
B[n_][X_] := B[n][X] = X^2*(B[n-1][X+1] - B[n-1][X]) // Simplify;
Table[Coefficient[B[i][X], X, j+1], {i, 1, 12}, {j, 1, i}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from David W. Wilson, Jan 12 2001
STATUS
approved