login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272380
a(n) = n*(120*n^4 - 480*n^3 + 762*n^2 - 556*n + 155).
4
0, 1, 342, 6315, 40492, 157125, 456546, 1099567, 2321880, 4448457, 7907950, 13247091, 21145092, 32428045, 48083322, 69273975, 97353136, 133878417, 180626310, 239606587, 313076700, 403556181, 513841042, 647018175, 806479752, 995937625, 1219437726, 1481374467
OFFSET
0,3
LINKS
Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014 (page 16).
Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
FORMULA
O.g.f.: x*(1 + 336*x + 4278*x^2 + 7712*x^3 + 2073*x^4)/(1-x)^6.
E.g.f.: x*(1 + 170*x + 882*x^2 + 720*x^3 + 120*x^4)*exp(x).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), for n>5.
a(n) = n^2*A272379(n) - n*(n-1)*A272379(n-1), see page 7 in Brent's paper.
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have x^2*(120*x^4 - 480*x^3 + 762*x^2 - 556*x + 155) = Sum_{n >= 0} ((n+1)^11 + n^11)*a(n,x) and x*(120*x^4 - 480*x^3 + 762*x^2 - 556*x + 155) = Sum_{n >= 0} ((n+1)^10 - n^10)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 11/2. See the Bala link in A036970. Cf. A272378 and A272379. (End)
MATHEMATICA
Table[n (120 n^4 - 480 n^3 + 762 n^2 - 556 n + 155), {n, 0, 50}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 342, 6315, 40492, 157125}, 40] (* Harvey P. Dale, Mar 15 2018 *)
PROG
(Magma) [n*(120*n^4 - 480*n^3 + 762*n^2 - 556*n + 155): n in [0..50]];
(PARI) vector(100, n, n--; n*(120*n^4 - 480*n^3 + 762*n^2 - 556*n + 155)) \\ Altug Alkan, Apr 29 2016
CROSSREFS
Sequence in context: A158595 A231267 A252235 * A023909 A035844 A028681
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 29 2016
STATUS
approved