login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272379
a(n) = n*(24*n^3 - 60*n^2 + 54*n - 17).
4
0, 1, 86, 759, 3100, 8765, 19986, 39571, 70904, 117945, 185230, 277871, 401556, 562549, 767690, 1024395, 1340656, 1725041, 2186694, 2735335, 3381260, 4135341, 5009026, 6014339, 7163880, 8470825, 9948926, 11612511, 13476484, 15556325, 17868090, 20428411
OFFSET
0,3
LINKS
Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014 (page 16).
Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
FORMULA
G.f.: x*(1 + 81*x + 339*x^2 + 155*x^3)/(1 - x)^5.
E.g.f.: x*(1 + 42*x + 84*x^2 + 24*x^3)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
See page 7 in Brent's paper:
a(n) = n^2*A272378(n) - n*(n-1)*A272378(n-1),
A272380(n) = n^2*a(n) - n*(n-1)*a(n-1).
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have x^2*(24*x^3 - 60*x^2 + 54*x - 17) = Sum_{n >= 0} ((n+1)^9 + n^9)*a(n,x) and x*(24*x^3 - 60*x^2 + 54*x - 17) = Sum_{n >= 0} ((n+1)^8 - n^8)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 9/2. See the Bala link in A036970. Cf. A272378 and A272380. (End)
MATHEMATICA
Table[n (24 n^3 - 60 n^2 + 54 n - 17), {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 86, 759, 3100}, 40] (* Harvey P. Dale, Mar 24 2021 *)
PROG
(Magma) [n*(24*n^3 - 60*n^2 + 54*n - 17): n in [0..50]];
(PARI) vector(100, n, n--; n*(24*n^3 - 60*n^2 + 54*n - 17)) \\ Altug Alkan, Apr 29 2016
CROSSREFS
Sequence in context: A232760 A232680 A232678 * A262916 A262331 A128957
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 29 2016
STATUS
approved