OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 9,..., in the square spiral whose vertices are the triangular numbers A000217.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 8*n^2 + n.
Sequences of the form a(n) = 8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 7 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = 8 - (1+sqrt(2))*Pi/2 - 4*log(2) - sqrt(2) * log(1+sqrt(2)) = 0.1887230016056779928... . - Vaclav Kotesovec, Sep 21 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(7*x + 9)/(1-x)^3.
E.g.f.: (8*x^2 + 9*x)*exp(x). (End)
MATHEMATICA
Table[n (8 n + 1), {n, 0, 40}] (* Bruno Berselli, Sep 21 2016 *)
LinearRecurrence[{3, -3, 1}, {0, 9, 34}, 50] (* Harvey P. Dale, Apr 21 2020 *)
PROG
(PARI) a(n) = n*(8*n+1); \\ Altug Alkan, Sep 21 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Apr 26 2008
STATUS
approved