The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273744 Partial sums of the number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 901", based on the 5-celled von Neumann neighborhood. 1
 1, 9, 34, 83, 164, 285, 454, 679, 968, 1329, 1770, 2299, 2924, 3653, 4494, 5455, 6544, 7769, 9138, 10659, 12340, 14189, 16214, 18423, 20824, 23425, 26234, 29259, 32508, 35989, 39710, 43679, 47904, 52393, 57154, 62195, 67524, 73149, 79078, 85319, 91880, 98769 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Initialized with a single black (ON) cell at stage zero. REFERENCES S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. LINKS Robert Price, Table of n, a(n) for n = 0..128 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015 Eric Weisstein's World of Mathematics, Elementary Cellular Automaton S. Wolfram, A New Kind of Science Index entries for sequences related to cellular automata Index to 2D 5-Neighbor Cellular Automata Index to Elementary Cellular Automata FORMULA Conjectures from Colin Barker, May 29 2016: (Start) a(n) = n*(11+12*n+4*n^2)/3 for n>0. a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4. G.f.: (1+5*x+4*x^2-3*x^3+x^4) / (1-x)^4. (End) MATHEMATICA CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}]; code=901; stages=128; rule=IntegerDigits[code, 2, 10]; g=2*stages+1; (* Maximum size of grid *) a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *) ca=a; ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}]; PrependTo[ca, a]; (* Trim full grid to reflect growth by one cell at each stage *) k=(Length[ca[[1]]]+1)/2; ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}]; on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *) Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *) CROSSREFS Cf. A273743. Sequence in context: A262959 A139275 A236370 * A133547 A100179 A106598 Adjacent sequences: A273741 A273742 A273743 * A273745 A273746 A273747 KEYWORD nonn,easy AUTHOR Robert Price, May 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 01:34 EDT 2024. Contains 372900 sequences. (Running on oeis4.)